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Editorial 

K-theory is a new discipline of mathematics embracing concepts and problems cen- 
tral to many other major disciplines of mathematics. The aim of this journal is to 
provide a forum for the presentation, discussion, and critical evaluation of signifi- 
cant advances in the mathematical sciences which are related to K-theory. It is ex- 
pected that this will bring together work having close conceptual and methodolo- 
gicaI relationships which, hitherto, had been scattered in the literature. 

The success of K-theory rests with its many applications to important problems 
in other disciplines and its ability to adapt to ongoing research in various areas of 
mathematics after obtaining a foothold there. 

Some spectacular successes of K-theory include its contributions to solving the 
following problems: Congruence subgroup problem for classical groups, metaplec- 
tic problem for classical groups, structure of finite central simple algebras, Serre's 
problem for polynomial rings, cancellation and other stability theorems, induction 
theorems over finite groups, structure and computation of Witt groups, Riemann- 
Roch theorems, structure and computation of Chow groups, generalizations of 
class field theory, generalizations of Bott periodicity, vector fields on spheres prob- 
lem, Hopf invariant one problem, Adams' conjecture, index theorems, structure 
and computation of obstruction groups in topology, classification of exotic spheres, 
triangulation of manifolds, rigidity of K(nl)-manifolds, topological invariance of 
Pontryagin classes, de Rham's conjecture, Novikov's conjecture, spherical space 
form problem, realization of scalar curvature, extension theory for C-algebras, 
glueing theory for dynamical systems, Kadison's conjecture, and existence of dis- 
crete series representations. 

The close bonds K-theory has with diverse parts of mathematics have continually 
brought it fresh impulses for new growth and development. In this process, K- 
theory has assimilated large tracts of other disciplines including, for example, num- 
ber theory, ring and module theory, quadratic form theory, algebraic geometry, 
algebraic and differential topology, and operator algebra theory. On the other 
hand, simultaneous applications of K-theory in various disciplines have promoted 
the transfer of concepts, methodologies, and information amongst them, thus tight- 
ening the bonds between them. Through assimilation and crosspollination, K- 
theory has become a unifying force in mathematical research. 

The interplay K-theory affords between various mathematical disciplines can be 
illustrated by looking at the history of the subject. Glancing at the list of applica- 
tions above, one sees that K-theory treats concepts and problems, many of which 
were firmly established over a half-century ago. Missing, however, at that time was 
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a satisfactory awareness of structural similarities amongst diverse disciplines. The 
1940's and 50's witnessed an increasing perception of such similarities, particularly 
because of the influence of algebraic topology, and the creation of a formal lan- 
guage for expressing them, namely category theory. Here, notions of structure are 
stated in terms of categories having certain properties and categories are compared 
via the concept of a functor. Categories occur naturally by grouping together 
mathematical objects 'of the same kind', such as vector bundles over a given space 
or quadratic forms over a given ring. Some important ways of studying objects 'of 
the same kind' are to attach structure-preserving invariants to them, such as Chern 
classes in the case of vector bundles, or to combine them in a pairwise fashion to 
form new objects of the same kind, such as taking the orthogonal sum of two 
quadratic forms. K-theory was created by using category theory to provide a sys- 
tematic basis for the considerations above. 

In his paper Classes de faisceaux et thdordme de Riemann-Roch, completed in 
several letters to Serre in 1957, Grothendieck associates to each (small) category 
cg, a group K(cg) defined as the free Abelian group on the isomorphism classes of 
objects of cg modulo relations given by the structure being preserved. This was the 
first paper in K-theory. Concerning his group and the choice of the letter K, 
Grothendieck says in his letter of 9 February 1985 to Bruce Magurn: 

The way I first visualized a K-group was as a group of 'classes of objects' of an Abelian (or more gener- 
ally, additive) category, such as coherent sheaves on an algebraic variety, or vector bundles, etc. I would 
presumably have called this group C(X) (X being a variety or any other kind of 'space'), C the initial 
letter of 'class', but my past in functional analysis may have prevented this, as C(X) designates also the 
space of continuous functions on X (when X is a topological space). Thus, I reverted to K instead of C, 
since my mother tongue is German, Class = Klasse (in German), and the sounds corresponding to C 

and K are the same. 

Grothendieck's results for K-groups and his formulation and proof of the 
Riemann-Roch theorem for algebraic vector bundles were the first results and 
applications of K-theory, although the rubric K-theory would not be coined until 
several years later. 

Grothendieck's K-construction was applied around 1960 to topological vector 
bundles and it was shown that the sequence of functors K -n = KZ", where Z"(X) 
denotes the n-fold suspension of a topological space X, leads to a generalized coho- 
mology theory. This theory was christened topological K-theory. Some early 
triumphs of topological K-theory were the solution to the vector fields on spheres 
problem (1962) and the first index theorem (1963). 

Drawing on a natural, structural equivalence between the category of topological 
vector bundles on a compact Hausdorff space X and the category of finitely gener- 
ated projective modules over the ring C(X), mathematicians attempted construct- 
ing algebraic analogues of the K-groups K-"  (X) of topological K-theory, for any 
ring A. At first, only two functors K0 and K1 were constructed. These functors, 
together with certain exact sequences and stability theorems, generalizing ones in 
topological K-theory, were announced in 1962. The new subject was dubbed alge- 
braic K-theory. Its first major problems were Serre's problem for polynomial rings, 
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posed already in 1955, and the problem of finding the higher Kn's, i.e., constructing 
K,,(A) for all n t> 0. Some early, outstanding achievements of algebraic K-theory 
were the solution to the congruence subgroup problem for certain families of clas- 
sical groups and computations of Siebenmann-Wall and Whitehead obstruction 
groups in topology. The machinery of algebraic K-theory was used, in the case of 
obstruction groups arising from spaces with finite fundamental group, to bring the 
methodology of classical induction theory for finite group and tools of number 
theory to bear on the computations. 

In 1966, the correct definition of algebraic/(2 was found and concepts of alge- 
braic K-theory were applied to quadratic and Hermitian forms, eventually giving 
rise to the K-theory of forms. Research in this area was stimulated right from the 
beginning by its close ties to geometric surgery on manifolds and the problem of 
computing surgery obstruction groups, where great strides were made in the fol- 
lowing decade. Negative algebraic K-theory groups K_,, (A) for all n I> 0 were un- 
covered in 1967 and found a decade later important applications in geometric 
topology such as in the triangulation of stratified spaces, which led in turn to new 
formulations of negative K-groups, and in the solution of de Rham's conjecture for 
linear versus topological equivalence of rotations. 

The major problems of algebraic K-theory of the 1960's were solved in the 
1970's. About 1970, several approaches to constructing higher algebraic K-theory 
groups were proposed, but it was first in 1972 after proper categorical-geometrical 
foundations were laid and Kn ( Z )  was defined for any category cg having suitable 
structure and any n/> 0, that a satisfactory theory was established. The higher K- 
theory of categories extended that of the Grothendieck group K(W) (=K0(cg)) in a 
natural way and allowed introducing higher K-theory into all areas where the 
Grothendieck group had played a role including algebraic K-theory (which is the 
K-theory of rings), the K-theory of forms, and algebraic geometry via the K-theory 
of schemes. The higher K-theory of schemes has become a valuable tool in the 
study of Chow groups. Towards the end of the 1970's, 6tale methods in algebraic 
geometry influenced the development of the 6tale K-theory of rings and schemes. 
The other major problem of algebraic K-theory, namely Serre's problem, was 
solved in 1976 and later generalized to regular rings and forms. 

Connections found in the 1960's between 'classical' algebraic K-theory and other 
areas of mathematics were extended in the 1970's to higher K-theory. One example 
concerns the functions of arithmetic. In the late 1960's, Birch and Tate conjectured 
a connection between the order of/(2 of an arithmetic Dedekind ring and the value 
of the Dedekind zeta function at -1 .  In the early 1970's, Lichtenbaum extended 
the conjecture to one between higher K-groups of an arithmetic Dedekind ring and 
values of the zeta function at negative integers. The Birch-Tate conjecture was 
proved at all odd primes and special cases of the Lichtenbaum conjecture have 
been established. As time progressed, the higher K-theory of rings and schemes 
was linked in other ways to zeta functions and to L-functions, regulator maps, and 
other functions of arithmetic and currently, there are many conjectures in this area. 

Higher K-theory was used in the latter half of the 1970's in developing 'higher' 
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class field theory for multi-dimensional local fields, for surfaces over finite fields, 
and for arithmetic surfaces. Ties between the K-theory of fields and Galois coho- 
mology, uncovered at that time, led in the current decade to spectacular results on 
the structure of finite central simple algebras. 

Towards the end of the 1970's, another major expansion of K-theory took shape 
and was again influenced by structural similarities between different categories. 
Using a natural duality between the homotopy category of compact Hausdorff 
spaces and the homotopy category of commutative C-algebras, mathematicians 
developed the K-theory of (not necessarily commutative) C*-algebras, generalizing 
topological K-theory, and the KK-theory of C-algebras, a bivariant theory con- 
taining K-theory in one variable and its dual K-homology in the other. Important 
applications of the new theories have been made in and outside of C*-algebra 
theory. Inside, for example, K-theoretic invariants are frequently the only tools 
available for distinguishing one C-algebra from another and K-theory was used in 
solving Kadison's conjecture that C'red (F,,) has no nontrivial projections. KK- 
theory used to classify extensions of C*-algebras. Outside of C*-algebra theory, 
KK-theory was used in establishing cases of the Novikov conjecture on the homo- 
topy invariance of higher signatures and in describing how the irreducible compo- 
nents of a topological dynamical system are glued together to form a global system. 
In recent years, the algebraic aspects of KK-theory have been studied and have led 
on the one hand to cyclic cohomology, which turns out to be closely related to 
algebraic K-theory, and on the other handto research aimed at constructing KK- 
groups for rings other than C*-algebras. Such research is included in the current 
issue. 

It is a special pleasure for me to express my gratitude to members of the editorial 
board for their support and advice in bringing about the journal K-Theory and to 
Liselotte Wiesenthal for sharing with me many decisions in this undertaking. 

May 1987 ANTHONY BAK 


